895 research outputs found

    Semantic Compression for Edge-Assisted Systems

    Full text link
    A novel semantic approach to data selection and compression is presented for the dynamic adaptation of IoT data processing and transmission within "wireless islands", where a set of sensing devices (sensors) are interconnected through one-hop wireless links to a computational resource via a local access point. The core of the proposed technique is a cooperative framework where local classifiers at the mobile nodes are dynamically crafted and updated based on the current state of the observed system, the global processing objective and the characteristics of the sensors and data streams. The edge processor plays a key role by establishing a link between content and operations within the distributed system. The local classifiers are designed to filter the data streams and provide only the needed information to the global classifier at the edge processor, thus minimizing bandwidth usage. However, the better the accuracy of these local classifiers, the larger the energy necessary to run them at the individual sensors. A formulation of the optimization problem for the dynamic construction of the classifiers under bandwidth and energy constraints is proposed and demonstrated on a synthetic example.Comment: Presented at the Information Theory and Applications Workshop (ITA), February 17, 201

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201

    Connotation Frames: A Data-Driven Investigation

    Full text link
    Through a particular choice of a predicate (e.g., "x violated y"), a writer can subtly connote a range of implied sentiments and presupposed facts about the entities x and y: (1) writer's perspective: projecting x as an "antagonist"and y as a "victim", (2) entities' perspective: y probably dislikes x, (3) effect: something bad happened to y, (4) value: y is something valuable, and (5) mental state: y is distressed by the event. We introduce connotation frames as a representation formalism to organize these rich dimensions of connotation using typed relations. First, we investigate the feasibility of obtaining connotative labels through crowdsourcing experiments. We then present models for predicting the connotation frames of verb predicates based on their distributional word representations and the interplay between different types of connotative relations. Empirical results confirm that connotation frames can be induced from various data sources that reflect how people use language and give rise to the connotative meanings. We conclude with analytical results that show the potential use of connotation frames for analyzing subtle biases in online news media.Comment: 11 pages, published in Proceedings of ACL 201
    • …
    corecore